资源类型

期刊论文 816

会议视频 12

会议信息 1

年份

2024 1

2023 72

2022 76

2021 79

2020 53

2019 75

2018 43

2017 47

2016 32

2015 33

2014 57

2013 43

2012 20

2011 30

2010 31

2009 36

2008 27

2007 29

2006 3

2005 5

展开 ︾

关键词

固体氧化物燃料电池 7

燃料电池 7

绿色化工 5

膜分离 5

反渗透 3

渗透汽化 3

SOFC 2

临床试验 2

催化剂 2

医学 2

反渗透膜 2

干细胞 2

氢燃料电池 2

氢能 2

燃烧特性 2

生物质 2

碳中和 2

碳基燃料 2

纳滤 2

展开 ︾

检索范围:

排序: 展示方式:

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

A linear quadratic regulator control of a stand-alone PEM fuel cell power plant

Amar BENAISSA, Boualaga RABHI, Ammar MOUSSI, Dahmani AISSA

《能源前沿(英文)》 2014年 第8卷 第1期   页码 62-72 doi: 10.1007/s11708-013-0291-5

摘要: This paper introduces a technique based on linear quadratic regulator (LQR) to control the output voltage at the load point versus load variation from a stand-alone proton exchange membrane (PEM) fuel cell power plant (FCPP) for a group housing use. The controller modifies the optimal gains by minimizing a cost function, and the phase angle of the AC output voltage to control the active and reactive power output from an FCPP to match the terminal load. The control actions are based on feedback signals from the terminal load, output voltage and fuel cell feedback current. The topology chosen for the simulation consists of a 45 kW proton exchange membrane fuel cell (PEMFC), boost type DC/DC converter, a three-phase DC/AC inverter followed by an LC filter. Simulation results show that the proposed control strategy operated at low commutation frequency (2 kHz) offers good performances versus load variations with low total harmonic distortions (THD) , which is very useful for high power applications.

关键词: modeling of proton exchange membrane fuel cell (PEMFC)     controlling of PEMFC     linear quadratic regulator (LQR)     DC/DC converter     DC/AC inverter    

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 318-325 doi: 10.1007/s11708-017-0488-0

摘要: The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel cell system (FCS)     durability     failure mode     fuel cell vehicle (FCV)     carbon corrosion     water management    

基于一维纳米结构阵列的质子交换膜燃料电池电极设计的研究进展 Review

杜尚峰

《工程(英文)》 2021年 第7卷 第1期   页码 33-49 doi: 10.1016/j.eng.2020.09.014

摘要: 基于一维铂基纳米结构阵列的三维(3D)有序电极的研究进展表明,它们在解决现有铂/碳(Pt/C)纳米颗粒电极在高性能质子交换膜燃料电池(PEMFC)的传质特性和持久性挑战方面具有巨大的潜力。

关键词: 质子交换膜燃料电池(PEMFC    电极     一维(1D)     氧还原反应(ORR)     催化剂     有序化    

Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel

Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 695-701 doi: 10.1007/s11705-019-1838-8

摘要: The modification of Pt/C catalyst by using ionic liquids to improve their catalyst activities has been reported by many researchers, but their practical behavior in operating fuel cells is still unknown. In this work, we study the ionic liquid modified Pt/C nanoparticle catalysts within cathodes for proton exchange membrane fuel cells. The influence of the ionic liquid amount, adsorption times and dispersing solvents are investigated. The experiment results show the best performance enhancement is achieved through two-time surface modification with 2 wt-% ionic liquid solution. The mechanisms are explored with the attribution to the high oxygen solubility in the ionic liquid enabling an improved oxygen diffusion in micropores and to good hydrophobicity facilitating water expelling from the active sites in fuel cell operation.

关键词: ionic liquid     PEMFC     electrode     oxygen reduction reaction     electrocatalyst     adsorption    

电动汽车和相关电源材料的现状与前景

杨遇春

《中国工程科学》 2003年 第5卷 第12期   页码 1-11

摘要:

论述了电动汽车(EV)、电动汽车用镍氢电池、锂离子电池、质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)及相关材料的研发现状、产业化前景,指出以电动汽车代替燃油内燃机汽车,以氢能代替碳基燃料

关键词: 电动汽车     镍氢电池     锂离子电池     质子交换膜燃料电池     固体氧化物燃料电池    

Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells

Ruiqing Wang, Xiaolan Cao, Sheng Sui, Bing Li, Qingfeng Li

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 364-375 doi: 10.1007/s11705-021-2052-z

摘要: The platinum nanowires have been verified to be a promising catalyst to promote the performance of proton exchange membrane fuel cells. In this paper, accurately controlled growth of nanowires in a carbon matrix is achieved for reducing Pt loading. The effects of formic acid concentration and reaction temperature on the morphology and size of the Pt nanowires, as well as their electrochemical performances in a single cell, are investigated. The results showed that the increase in the formic acid concentration results in a volcano trend with the length of Pt nanowires. With increasing reduction temperature, the diameter of Pt nanowires increases while Pt particles evolve from one-dimensional to zero-dimensional up to 40 °C. A mechanism of the Pt nanowires growth is proposed. The optimized Pt nanowires electrode exhibits a power density (based on electrochemical active surface area) 79% higher than conventional Pt/C one. The control strategy obtained contributes to the design and control of novel nanostructures in nano-synthesis and catalyst applications.

关键词: Pt nanowires     morphology     structure control     in situ growth mechanism     proton exchange membrane fuel cells    

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer for protonexchange membrane fuel cells

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 123-133 doi: 10.1007/s11708-022-0849-1

摘要: High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells (PEMFCs), in which Pt-based catalysts employed in the cathodic catalyst layer (CCL) account for the major portion of the cost. Although non-precious metal catalysts (NPMCs) show appreciable activity and stability in the oxygen reduction reaction (ORR), the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL. Therefore, most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport. In this work, the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures, one containing low-Pt-based CCL and NPMC-based dummy catalyst layer (DCL) and the other containing only the NPMC-based CCL. Using Zn-N-C based DCLs of different thickness, the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis. Then, the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy, respectively. Results show that the ratios of local and bulk oxygen transport resistances in NPMC-based CCL are 80% and 20%, respectively, and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs. Furthermore, the activity of active sites per unit in NPMC-based CCLs was determined to be lower than that in the Pt-based CCL, thus explaining worse cell performance of NPMC-based membrane electrode assemblys (MEAs). It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.

关键词: proton exchange membrane fuel cells (PEMFCs)     non-precious metal catalyst (NPMC)     cathode catalyst layer (CCL)     local and bulk oxygen transport resistance    

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for protonexchange membrane fuel cells

《能源前沿(英文)》 doi: 10.1007/s11708-023-0907-3

摘要: Platinum (Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction. Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper. The design thoughts and synthesis of various isolated, alloyed, and nanoparticle-contained Pt SACs are summarized. The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts. To advance further research and development of Pt SACs for viable implementation in PEMFCs, various technical challenges and several potential research directions are outlined.

关键词: oxygen reduction electrocatalysis     Pt single-atom catalysts     conventional Pt-based catalysts     design thoughts and synthesis     metal-support interactions    

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 137-148 doi: 10.1007/s11708-011-0153-y

摘要: Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.

关键词: proton exchange membrane fuel cells (PEMFCs)     cathode electrocatalysts     platinum     oxygen reduction reaction (ORR)    

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

T.S. Zhao, Y.S. Li, S.Y. Shen

《能源前沿(英文)》 2010年 第4卷 第4期   页码 443-458 doi: 10.1007/s11708-010-0127-5

摘要: Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm at 90°C). Anion-exchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.

关键词: fuel cell     direct ethanol fuel cells     anion-exchange membrane     ethanol oxidation reaction     oxygen reduction reaction     cell performance    

质子交换膜燃料电池的研究进展

任学佑

《中国工程科学》 2005年 第7卷 第1期   页码 86-94

摘要:

论述了质子交换膜燃料电池的开发现状及国内外研究进展;同时介绍了趋于成熟的贮氢技术,包括质子交换膜、双极板、膜电极和电催化剂在内的关键技术、应用以及未来展望。

关键词: 燃料电池     质子交换膜     双极板     膜电极     电催化剂     开发现状    

Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuelcell

ZHUGE Weilin, ZHANG Yangjun, LAO Xingsheng, CHEN Xiao, MING Pingwen

《能源前沿(英文)》 2007年 第1卷 第3期   页码 305-310 doi: 10.1007/s11708-007-0044-4

摘要: Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management. A three-dimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory. The reactant gas flow, diffusion, and chemical reaction as well as the liquid water transport and phase change process are modeled. Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted. Results show that liquid water distributes mostly in the cathode, and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion. The simulation results agree well with experimental data.

关键词: diffusion     gas/liquid two-phase     management     exchange     transfer    

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

《能源前沿(英文)》 2017年 第11卷 第3期   页码 299-309 doi: 10.1007/s11708-017-0495-1

摘要: A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm and a mass activity of 0.59 A/mg at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm operating on H /O and 700 MW/cm operating on H /Air (CO -free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/Vulcan catalyst also exhibited high stability during a short-term, AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improvement over most AEMFCs reported in the literature to date.

关键词: alkaline exchange membrane (AEM)     fuel cell     Pd-Cu     oxygen reduction     high performance     water    

Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranesfor direct methanol fuel cells

GAO Qijun, HUANG Mianyan, WANG Yuxin, CAI Yuquan, XU Li

《化学科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 95-101 doi: 10.1007/s11705-008-0012-5

摘要: Sulfonated poly(ether ether ketone) (SPEEK) is a very promising alternative membrane material for direct methanol fuel cells. However, with a fairly high degree of sulfonation (DS), SPEEK membranes can swell excessively and even dissolve at high temperature. This restricts membranes from working above a high tolerable temperature to get high proton conductivity. To deal with this contradictory situation, insolvable zirconium tricarboxybutylphosphonate (Zr(PBTC)) powder was employed to make a composite with SPEEK polymer in an attempt to improve temperature tolerance of the membranes. SPEEK/Zr(PBTC) composite membranes were obtained by casting a homogeneous mixture of Zr(PBTC) and SPEEK in N,N-dimethylacetamide on a glass plate and then evaporating the solvent at 60°C. Many characteristics were investigated, including thermal stability, liquid uptake, methanol permeability and proton conductivity. Results showed significant improvement not only in temperature tolerance, but also in methanol resistance of the SPEEK/Zr(PBTC) composite membranes. The membranes containing 30 wt-% ∼ 40 wt-% of Zr(PBTC) had their methanol permeability around 10 cm·s at room temperature to 80°C, which was one order of magnitude lower than that of Nafion115. High proton conductivity of the composite membranes, however, could also be achieved from higher temperature applied. At 100% relative humidity, above 90°C the conductivity of the composite membrane containing 40 wt-% of Zr(PBTC) exceeded that of the Nafion115 membrane and even reached a high value of 0.36 S·cm at 160°C. Improved applicable temperature and high conductivity of the composite membrane indicated its promising application in DMFC operations at high temperature.

关键词: homogeneous mixture     PBTC     zirconium tricarboxybutylphosphonate     Nafion115     DMFC    

标题 作者 时间 类型 操作

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

A linear quadratic regulator control of a stand-alone PEM fuel cell power plant

Amar BENAISSA, Boualaga RABHI, Ammar MOUSSI, Dahmani AISSA

期刊论文

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

期刊论文

基于一维纳米结构阵列的质子交换膜燃料电池电极设计的研究进展

杜尚峰

期刊论文

Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel

Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du

期刊论文

电动汽车和相关电源材料的现状与前景

杨遇春

期刊论文

Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells

Ruiqing Wang, Xiaolan Cao, Sheng Sui, Bing Li, Qingfeng Li

期刊论文

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer for protonexchange membrane fuel cells

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

期刊论文

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for protonexchange membrane fuel cells

期刊论文

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

期刊论文

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

T.S. Zhao, Y.S. Li, S.Y. Shen

期刊论文

质子交换膜燃料电池的研究进展

任学佑

期刊论文

Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuelcell

ZHUGE Weilin, ZHANG Yangjun, LAO Xingsheng, CHEN Xiao, MING Pingwen

期刊论文

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

期刊论文

Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranesfor direct methanol fuel cells

GAO Qijun, HUANG Mianyan, WANG Yuxin, CAI Yuquan, XU Li

期刊论文